
The attached wpa_supplicant had supported the WPS LED specification. The

wpa_supplicant will handle all the WPS procedures so the key point to support the

WPS LED specification is the wpa_supplicant has to inform WiFi driver the current

WPS status. The WPS status includes the WPS start, WPS stop with failure, and WPS

stop with success. The wpa_supplicant will use “inform_driver_wps_state” with

issuing the private IOCTL to tell the WiFi driver about the WPS status.

void inform_driver_wps_state(void *drv_priv, u32 u32wps_state)

{

 struct iwreq iwr;

 struct wpa_driver_wext_data* drv = (struct wpa_driver_wext_data*)

drv_priv;

 os_memset(&iwr, 0, sizeof(iwr));

 os_strlcpy(iwr.ifr_name, drv->ifname, IFNAMSIZ);

 iwr.u.data.pointer = (caddr_t) &u32wps_state;

 //iwr.u.data.pointer = &u32wps_state;

 iwr.u.data.length = sizeof(u32wps_state);

 if (ioctl(drv->ioctl_sock, SIOCIWFIRSTPRIV + 0x6, &iwr) < 0) {

 if (errno != EOPNOTSUPP)

 perror("ioctl[SIOCIWFIRSTPRIV + 0x6]");

 }

}

The above code can be found src\drivers\Driver_wext.c line 147.

The u32wps_state is the value to present the current WPS state. If the u32wps_state is

1, it means the state is going to start the WPS. If the u32wps_state is 2, it means the

state is WPS-success and stop. If the u32wps_state is 3, it means the state is

WPS-failure and stop.

The wpa_supplicant will pass u32wps_state with 1 to the driver in the

wpas_wps_start_pbc and wpas_wps_start_pin functions. The

wpa_supplicant_wps_event_success will pass the u32wps_state with 2 to driver, the

wpa_supplicant_wps_event_fail and wpas_wps_timeout will pass the u32wps_state

with 3 to driver.

In order to receive the WPS state information passed from the wpa_supplicant, the

WiFi driver added a function named “r871x_wps_start” to receive it. This function is

defined in the ioctl\rtl871x_ioctl_linux.c line 2959 and it will start all the LED control

flow.

